MARKSCHEME

May 2000

CHEMISTRY

Standard Level

Paper 3

Total [15 marks]

OPTION A – HIGHER ORGANIC CHEMISTRY

A1.	(a)	(i)	C_5H_{12}	[1]
		(ii)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ ; CH ₃ CH(CH ₃)CH ₂ CH ₃ ; CH ₃ C(CH ₃) ₃	[3]
			(Accept in any order.)	
		(iii)	(Loss of) CH ₃ or CH ₃ ⁺ ; reference to a difference of 15.	[2]
		(iv)	(further loss of) $CH_2^{(+)}$ / $CH_3CH_2^{(+)}$ / $CH_3CH_2CH_2^{(+)}$ / $CH_3CH_2CH_2^{(+)}$.	[1]
		(v)	$\mathbf{A} = \mathrm{CH}_3 \mathrm{C}(\mathrm{CH}_3)_3$	[1]
			B = CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ / even CH ₃ CH(CH ₃)CH ₂ CH ₃	[1]
			Correct naming of their A and B.	[2]
	(b)	A	1 peak/singlet similar environment of each (or words to that effect).	[1] [1]
		В	3 or 4 peaks consistent with their choice of B .	[1]
			$e.g. CH_3CH_2CH_2CH_2CH_3 = 3$	
	(c)	Both	contain only C—H and C—C bonds.	[1]

OPTION B – HIGHER PHYSICAL CHEMISTRY

B1. (a) (i) pH = 1 [1]

(ii) Use of $K_a \rightarrow \frac{[H^+]^2}{0.1} = 1.7 \times 10^{-5}$

$$([H^+] = 1.30 \times 10^{-3})$$

 $pH \sim 2.88$

(Expression $K_a = \frac{[H^+]^2}{[CH_3COOH]}$ scores [1] in absence of any other credit.)

- (b) Volumes would be the same (each 20 cm³) [1]
 - (in each case) all acid particles neutralised/common reaction $H^+ + OH^- = H_2O$ [1] / both monoprotic acids.
- (c) A solution which resists changes in pH on addition of small amounts of acid/alkali. [1]
- (d) Ethanoic acid product contains weak acid plus salt of weak acid strong base / CH₃COOH—CH₃COO⁻Na⁺ mixture (or words to that effect). [1]
- (e) (i) absence of a weak conjugate base/ Cl^- ions do not react with H^+ (or words to that effect). [1]
 - (ii) concentration of conjugate base too low/not enough CH₃COO⁻ ions present (or words to that effect). [1]

Total [10 marks]

B2. (a) Rate = $k[H_2][NO]^2$

(Award [1] for k, [1] for $[H_2]$ and [1] for $[NO]^2$. If $R \propto [H_2][NO]^2$ is written, award only [2].)

Overall order is 3 (consequential on rate equation). [1]

(b) ×8 (consequential on overall order). [1]

Total [5 marks]

OPTION C – HUMAN BIOCHEMISTRY

C1. (a) (i)

Award [1] for either circled C and [1] for the whole structure.

- (ii) In the ring structure of glucose on the C_1 atom/the "carbonyl" C. [1] the H/OH are in different positions in α/β [1] OR illustration of this (diagrammatically).
- (b) (i) glucose and fructose [2]
 - (ii) glucose (and glucose) [1]
- (c) (Award [1] for any of the below.)

Food or energy reserves/resources/stores/glycogen/starch Structure/cell walls/cellulose/chitin.

Total [8 marks]

[1]

[2]

C2.	(a)	6.		[1]
	(b)	(i)	Chromatography and electrophoresis.	[2]
		(ii)	(Award up to [4] for the following points for EITHER paper chromatography OR electrophoresis.)	
			Paper chromatography:	
			hydrolyse/release amino acids/heat with acid; place sample spot on paper; place paper in solvent (or suitable named solvent); compare distances travelled/ R_f values with known values.	[1] [1] [1] [1]
			Electrophoresis:	
			hydrolysis; 'loading' onto origin; variable voltage/distance moved from origin; compare isoelectric points (standards) <i>etc</i> .	[1] [1] [1] [1]
			Total [7 me	arks]

Total [7 marks]

OPTION D – ENVIRONMENTAL CHEMISTRY

			Source		Reduction of emission	<u>.</u>
D1.	(a)	(i)	Incomplete combustion of C-containing fuel/named fuel	[1]	Use catalytic converter*	[1]
		(ii)	Burning sulfur-containing fuel/coal	[1]	Desulfurisation/scrubbing (flue gases)	[1]
		(iii)	Reaction of gases in air/nitrogen and oxygen (at high temperatrure)	[1]	Use catalytic converter*	[1]
* al	low c :	atalyt	ic converter once only			
		(Awa	ard final mark for correct product from	one oj	the above:)	
		(i)	Carbon dioxide;			
		(ii)	Sulfur/sulfate/hydrogen sulfide;		[1]	
		(iii)	Nitrogen.			[6]
	(b)	One	of SO_2 or NO_x (however described)			[1]
		EIT	HER $SO_2 + H_2O \rightleftharpoons H_2SO_3$			[1]
		OR	$2NO + 1\frac{1}{2}O_2 + H_2O \rightarrow 2HNO_3$	(fo	r example)	
					Tota	ıl [8 marks]
D2.	(a)		ount of oxygen needed to break down or uced availability of oxygen/fewer living	-		[1] [1]
	(b)	Acti	ondary treatment; vated sludge process; anic matter broken down/oxidised by ba	cteria.		[1] [1] [1]
	(c)	Oxy	t growth encouraged; gen concentration reduced by plant deca ow eutrophication as alternative to eithe	-	ve above.)	[1] [1]

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	Accept a temperature range 400–550 °C in each case.			[1]			
		Pressure 150–500 atm (Haber)	1–2 atm (Cont	act)	[1]			
		Catalyst iron/iron oxide oxide	Vanadium	pentoxide/Vanadium(V)	[1] + [1]			
		(For each process, 3 correct conditions [2], 2 correct [1].)						
	(b)	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (state symbols NO	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (state symbols NOT required). [1]					
		(Don't penalise absence of reversible symbol.)						
		High temperature increases rate/gives greater rate of reaction But gives low yield of NH ₃ Some comment on a compromise temperature [1]						
	(c)	arbon (saturated);	[1]					
		 high temperature 	e/heat/catalyst (/	[1] for any one of the three.	[1]			
		(Award [1] for any one of the following equations.)						
$C_{7}H_{16} \rightarrow C_{6}H_{5}CH_{3} + 4H_{2}$ $C_{6}H_{14} \rightarrow C_{6}H_{6} + 4H_{2}$ $C_{2}H_{6} \rightarrow C_{2}H_{4} + H_{2}$ etc.								
		(even) $CH_4 + H_2O \rightarrow CO + 3H_2$			[1]			
				Total	[11 marks]			
E2.	(a)	(Award [2] for any two of the following	ng:)					
		'close' to C ₂ H ₄ source; close to industries needing polythene; workforce; away from residential areas;	·					
		etc.			[2]			
	(b)	Polar C—Cl bonds in PVC; stronger intermolecular forces (than p	oolythene).		[1] [1]			
				Tota	l [4 marks]			

OPTION F – FUELS AND ENERGY

F1.	(a)	(i)	219; 86.	[1] [1]
		(ii)	Mass number No change; Atomic number +1.	[1] [1]
	(b)	(i)	Time taken for activity to decrease by half (or words to that effect).	[1]
		(ii)	11.7 days. Some working essential, <i>e.g.</i> 3-half lives mentioned.	[1] [1]
		(iii)	$\frac{7}{8}$ or 0.875 or 87.5 %.	[1]
		(iv)	12.5 % or $\frac{1}{8}$.	[1]
				Total [9 marks]
F2.	(a)	Zinc and a	graphite (accept carbon).	[1] [1]
	(b)	Volta Pow	[1] [1]	
		Volta Pow	[1] [1]	
				Total [6 marks]